Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(15): 11746-11754, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563826

ABSTRACT

A recent experimental study has reported that decatungstate [W10O32]4- can degrade various polyesters in the presence of light and molecular oxygen [Li et al., Nanoscale, 2023, 15, 15038]. We apply density functional theory to the photocatalyst-polycaprolactone model complex in acetonitrile solution and elucidate the degradation mechanisms and catalytic cycle. We consider hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms. The potential energy profiles show that the former proceeds exergonically in a single step but that the latter involves a subsequent proton transfer and finally yields HAT products as well. Oxygenated polymer species can regain the transferred hydrogen and regenerate the reduced photocatalyst. We propose a photocatalytic cycle that realizes both the photocatalyst regeneration and the polymer degradation.

2.
Nanoscale ; 16(16): 8013-8019, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38545655

ABSTRACT

Photocatalytic polymer degradation based on harnessing the abundant light energy present in the environment is one of the promising approaches to address the issue of plastic waste. In this study, we developed a multi-stimuli-responsive photocatalytic polymer degradation system facilitated by the photocatalysis of a polyoxometalate [γ-PV2W10O40]5- in conjunction with chloride ions (Cl-) as harmless and abundant stimuli. The degradation of various polymers was significantly accelerated in the presence of Cl-, which was attributed to the oxidation of Cl- by the polyoxometalate photocatalysis into a highly reactive chlorine radical that can efficiently generate a carbon-centered radical for subsequent polymer degradation. Although organic and organometallic photocatalysts decomposed under the conditions for photocatalytic polymer degradation in the presence of Cl-, [γ-PV2W10O40]5- retained its structure even under these highly oxidative conditions.

3.
J Chem Phys ; 152(2): 024119, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31941312

ABSTRACT

This paper presents the nonadiabatic molecular dynamics simulation in the solution phase using the spin-flip time-dependent density functional theory (SF-TDDFT). Despite the single-reference level of theory, the SF-TDDFT method can generate the correct topology of S0/S1 crossing points, thus providing a natural S1 → S0 nonadiabatic transition. We extend the gas-phase trajectory surface hopping simulation with the SF-TDDFT [N. Minezawa and T. Nakajima, J. Chem. Phys. 150, 204120 (2019)] to the hybrid quantum mechanical/molecular mechanics (QM/MM) scheme. To this end, we modify the code to evaluate the electrostatic interaction between the QM and MM atoms and to extract the classical MM energy and forces from the MM program package. We apply the proposed method to the photoisomerization reaction of aqueous E-azomethane and anionic green fluorescent protein chromophore in water and compare the results with those of the previous simulation studies based on the multireference methods.

4.
J Chem Phys ; 150(20): 204120, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31153219

ABSTRACT

This paper presents the nonadiabatic molecular dynamics simulation combined with the spin-flip time-dependent density functional theory (SF-TDDFT). In contrast to the conventional single-reference electronic structure methods, which have difficulty in describing the S0/S1 conical intersections, the SF-TDDFT can yield the correct topology of crossing points. Thus, one expects that the method can take naturally into account the S1 → S0 nonadiabatic transitions. We adopt Tully's fewest switch surface hopping algorithm by introducing the analytic SF-TDDFT nonadiabatic coupling vector. We apply the proposed method to the photoisomerization reactions of E-azomethane, methanimine, and ethene molecules and reproduce the results of previous studies based on the multireference methods. The proposed approach overcomes the ad hoc treatment of S1 → S0 transition at the single-reference calculation level and affords both the dynamics on the S1 state and the recovery of the S0 state with modest computational costs.

5.
J Chem Phys ; 141(16): 164118, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25362283

ABSTRACT

Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.


Subject(s)
Models, Molecular , Photochemical Processes , Quantum Theory , Acetonitriles/chemistry , Algorithms , Molecular Conformation , Solutions , Solvents/chemistry , Stilbenes/chemistry , Thermodynamics , Thymine/chemistry , Water/chemistry
6.
J Chem Phys ; 138(24): 244101, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23822221

ABSTRACT

Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.


Subject(s)
Acetonitriles/chemistry , Benzaldehydes/chemistry , Quantum Theory , Photochemical Processes , Protons , Solutions , Spectrometry, Fluorescence , Surface Properties , Time Factors
7.
J Phys Chem B ; 117(49): 15386-94, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-23763551

ABSTRACT

Excited-state enol to keto tautomerization of 7-hydroxy-4-methylcoumarin (C456) with three water molecules (C456:3H2O), is theoretically investigated using time-dependent density functional theory (TDDFT) combined with the polarizable continuum model and 200 waters explicitly modeled with the effective fragment potential. The tautomerization of C456 in the presence of three water molecules is accompanied by an asynchronous quadruple hydrogen atom transfer reaction from the enol to the keto tautomer in the excited state. TDDFT with the PBE0 functional and the DH(d,p) basis set is used to calculate the excited-state reaction barrier height, absorption (excitation), and fluorescence (de-excitation) energies. These results are compared with the available experimental and theoretical data. In contrast to previous work, it is predicted here that the coumarin 456 system undergoes a hydrogen atom transfer, not a proton transfer. The calculated reaction barrier of the first excited state of C456:3H2O with 200 water molecules is found to be -0.23 kcal/mol without zero-point energy (-5.07 kcal/mol with zero point energy, i.e., the activation energy).


Subject(s)
Hydrogen/chemistry , Hymecromone/chemistry , Solvents/chemistry , Models, Molecular , Thermodynamics , Water/chemistry
8.
J Chem Theory Comput ; 9(9): 4116-23, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-26592404

ABSTRACT

Automated search for minimum energy conical intersection geometries between the lowest two singlet states (S0/S1-MECIs) was performed by combining the anharmonic downward distortion following (ADDF) method, the seam model function (SMF) approach, and the spin-flip (SF) TDDFT method. SMF/ADDF has been employed previously in automated searches for MECIs on potential energy surfaces (PESs) with expensive multireference methods. In this work, we adopt the SF-TDDFT method that enables efficient optimization of S0/S1-MECIs in the framework of TDDFT. To evaluate the performance of the present approach, it was applied to ethylene and 1,3-butadiene. The present method automatically gave unknown S0/S1-MECIs as well as all previously reported ones. Therefore, the present hybrid method of SMF/ADDF and SF-TDDFT is shown to be a promising approach to locate S0/S1-MECIs of large systems automatically with modest computational costs.

9.
J Chem Phys ; 137(3): 034116, 2012 Jul 21.
Article in English | MEDLINE | ID: mdl-22830692

ABSTRACT

Solvent effects on a potential energy surface crossing are investigated by optimizing a conical intersection (CI) in solution. To this end, the analytic energy gradient has been derived and implemented for the collinear spin-flip density functional theory (SFDFT) combined with the effective fragment potential (EFP) solvent model. The new method is applied to the azomethane-water cluster and the chromophore of green fluorescent protein in aqueous solution. These applications illustrate not only dramatic changes in the CI geometries but also strong stabilization of the CI in a polar solvent. Furthermore, the CI geometries obtained by the hybrid SFDFT/EFP scheme reproduce those by the full SFDFT, indicating that the SFDFT/EFP method is an efficient and promising approach for understanding nonadiabatic processes in solution.


Subject(s)
Azo Compounds/chemistry , Green Fluorescent Proteins/chemistry , Luminescent Agents/chemistry , Water/chemistry , Models, Chemical , Models, Molecular , Quantum Theory , Solubility , Thermodynamics
10.
J Chem Theory Comput ; 8(12): 5008-12, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-26593192

ABSTRACT

Fragment molecular orbital molecular dynamics (FMO-MD) with periodic boundary conditions is performed on liquid water using the analytic energy gradient, the electrostatic potential point charge approximation, and the electrostatic dimer approximation. Compared to previous FMO-MD simulations of water that used an approximate energy gradient, inclusion of the response terms to provide a fully analytic energy gradient results in better energy conservation in the NVE ensemble for liquid water. An FMO-MD simulation that includes the fully analytic energy gradient and two body corrections (FMO2) gives improved energy conservation compared with a previously calculated FMO-MD simulation with an approximate energy gradient and including up to three body corrections (FMO3).

11.
J Phys Chem A ; 115(27): 7901-11, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21639100

ABSTRACT

The photoisomerization process of 1,2-diphenylethylene (stilbene) is investigated using the spin-flip density functional theory (SFDFT), which has recently been shown to be a promising approach for locating conical intersection (CI) points (Minezawa, N.; Gordon, M. S. J. Phys. Chem. A2009, 113, 12749). The SFDFT method gives valuable insight into twisted stilbene to which the linear response time-dependent DFT approach cannot be applied. In contrast to the previous SFDFT study of ethylene, a distinct twisted minimum is found for stilbene. The optimized structure has a sizable pyramidalization angle and strong ionic character, indicating that a purely twisted geometry is not a true minimum. In addition, the SFDFT approach can successfully locate two CI points: the twisted-pyramidalized CI that is similar to the ethylene counterpart and another CI that possibly lies on the cyclization pathway of cis-stilbene. The mechanisms of the cis--trans isomerization reaction are discussed on the basis of the two-dimensional potential energy surface along the twisting and pyramidalization angles.

12.
J Chem Phys ; 134(5): 054111, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21303096

ABSTRACT

Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method. The EFP method is an efficient ab initio based polarizable model that describes the explicit solvent effects on electronic excitations, in the present work within a hybrid TDDFT/EFP scheme. The new method is applied to the excited-state MD of aqueous formaldehyde in the n-π* state. The calculated π*→n transition energy and solvatochromic shift are in good agreement with other theoretical results.


Subject(s)
Formaldehyde/chemistry , Molecular Dynamics Simulation , Quantum Theory , Solvents/chemistry , Spectrometry, Fluorescence
13.
J Phys Chem A ; 113(46): 12749-53, 2009 Nov 19.
Article in English | MEDLINE | ID: mdl-19905013

ABSTRACT

Conical intersections (CIs) of ethylene have been successfully determined using spin-flip density functional theory (SFDFT) combined with a penalty-constrained optimization method. We present in detail three structures, twisted-pyramidalized, hydrogen-migrated, and ethylidene CIs. In contrast to the linear response time-dependent density functional theory, which predicts a purely twisted geometry without pyramidalization as the S(1) global minimum, SFDFT gives a pyramidalized structure. Therefore, this is the first correct optimization of CI points of twisted ethylene by the DFT method. The calculated energies and geometries are in good agreement with those obtained by the multireference configuration interaction (MR-CI) method and the multistate formulation of second-order multireference perturbation theory (MS-CASPT2).


Subject(s)
Computer Simulation , Ethylenes/chemistry , Models, Chemical , Quantum Theory , Photochemistry , Time Factors
14.
J Chem Phys ; 126(5): 054511, 2007 Feb 07.
Article in English | MEDLINE | ID: mdl-17302489

ABSTRACT

The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.


Subject(s)
Algorithms , Computer Simulation , Solvents/chemistry , Acetone/chemistry , Molecular Conformation , Nitriles/chemistry , Nitrobenzenes/chemistry , Static Electricity , Thermodynamics , Water/chemistry
15.
J Phys Chem A ; 109(24): 5445-53, 2005 Jun 23.
Article in English | MEDLINE | ID: mdl-16839072

ABSTRACT

Intramolecular charge-transfer (ICT) state formation of 4-(N,N-dimethylamino)benzonitrile in acetonitrile solution is studied by the reference interaction site model self-consistent field (RISM-SCF) method. Geometry optimizations are performed for each electronic state in solution with the complete-active-space SCF wave functions. Dynamic electron correlation effects are taken into account by using the multiconfigurational quasidegenerate perturbation theory. Two-dimensional free energy surfaces are constructed as the function of the twisting and wagging angles of the dimethylamino group for the ground and locally excited (LE) states. The calculated absorption and fluorescence energies are in good agreement with experiments. The validity of the twisted ICT (TICT) model is confirmed in explaining the dual fluorescence, and the possibility of the planar ICT model is ruled out. To examine the mechanism of the TICT state formation, a "crossing" seam between the LE and charge-transfer (CT) state surfaces is determined. The inversion of two electronic states occurs at a relatively small twisting angle. The effect of solvent reorganization is also examined. It is concluded that the intramolecular twisting coordinate is more important than the solvent fluctuation for the TICT state formation, because the energy difference between the two states is minimally dependent on the solvent configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...